Problem 32.29

A 68 turn air-core solenoid is .08 meters long and has a diameter of .012 meters. How much energy is stored when it carries a .77 amp current?

The energy wrapped up in a current-carrying coil is $U = \frac{1}{2}Li^2$.

In Problem 32.10, we derived an expression for the inductance of an inductor in terms of its geometry. That relationship was

$$L = \mu_o \frac{N^2 A}{1}$$

Putting in the numbers, we get:

$$L = \mu_o \frac{N^2 (\pi r^2)}{1}$$

$$= (1.26 \times 10^6) \frac{(68)^2 (\pi (.6 \times 10^{-2} \text{ m})^2)}{(.08 \text{ m})}$$

$$= 8.21 \times 10^{-3} \text{ H}$$

1.)

The energy in our current-carrying inductor is, then:

$$U = \frac{1}{2} \text{Li}^2$$

$$= \frac{1}{2} (8.21 \times 10^{-3} \text{ H}) (.77 \text{ A})^2$$

$$= 2.44 \times 10^{-6} \text{ J}$$